Section 4.4: Evaluating Logarithms and the Change of Base Formula

Video 1

The common logarithm $\log _{10} x$ is the logarithm whose base is 10 .
It is often written without the base: $\log x$.
All scientific calculators have a built-in function for finding common logarithms.

1) Find the following. Round to 3 decimal places if necessary.
a) $\log 10,000$
b) $\log 321$
c) $\log 0.03$

Video 2

pH of a Solution: $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
where $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is the hydronium ion concentration in moles/liter.
2) Find the pH of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.2 \times 10^{-5}$.
3) Find the hydronium ion concentration in moles/liter for a substance whose pH is 9.6.

Video 3

Decibel Rating of a Sound: $d=10 \log \frac{I}{I_{0}}$, where I_{o} is the intensity of the threshold sound and I is the intensity of the sound.
4) Find the decibel rating of a sound whose intensity is $75,000 I_{0}$.
5) Find the intensity of the sound of a vacuum cleaner whose decibel rating is 85 .

Video 4

The natural logarithm, $\ln x$, is the logarithm whose base is the natural base $e \approx 2.71828 \ldots$
6) Find the following. Round to 3 decimal places if necessary.
a) $\ln e^{7}$
b) $\ln 2000$
c) $\ln 0.01$

Video 5

The age of a rock, t, can be determined by measuring its amounts of argon-40 (A) and potassium-40 (K), and using this formula: $t=\left(1.26 \times 10^{9}\right) \frac{\ln \left(1+8.33\left(\frac{A}{K}\right)\right)}{\ln 2}$.
7) Find the age of a rock in which $A=4.5 K$. Round to the nearest hundredth of a billion years.
8) Find the age of a rock for which $\frac{A}{K}=0.8$. Round to the nearest hundredth of a billion years.

Video 6

Change of Base formula

For any positive numbers a, b, and $x(a \neq 1, b \neq 1)$

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

This allows us to rewrite any logarithm in terms of natural logarithms or common logarithms. Proof:
9) Use the Change of Base formula to approximate the following to 4 decimal places.
a) $\log _{2} 32$
b) $\log _{6} 50$
c) $\log _{9} 0.5$

