Section 4.4: Evaluating Logarithms and the Change of Base Formula

Video 1

The *common logarithm* $\log_{10} x$ is the logarithm whose base is 10. It is often written without the base: $\log x$.

All scientific calculators have a built-in function for finding common logarithms.

1) Find the following. Round to 3 decimal places if necessary.

a) log10,000 b) log321 c) log0.03

Video 2

pH of a Solution: $pH = -log[H_3O^+]$ where $[H_3O^+]$ is the hydronium ion concentration in moles/liter.

2) Find the pH of a solution with $\left[H_3 O^+ \right] = 3.2 x 10^{-5}$.

3) Find the hydronium ion concentration in moles/liter for a substance whose pH is 9.6.

Video 3

Decibel Rating of a Sound: $d = 10 \log \frac{I}{I_0}$, where I_o is the intensity of the threshold sound and I is the intensity of the sound.

4) Find the decibel rating of a sound whose intensity is $75,000I_0$.

5) Find the intensity of the sound of a vacuum cleaner whose decibel rating is 85.

Video 4

The natural logarithm, $\ln x$, is the logarithm whose base is the natural base $e \approx 2.71828...$

6) Find the following. Round to 3 decimal places if necessary.

a) $\ln e^7$ b) $\ln 2000$ c) $\ln 0.01$

Video 5

The age of a rock, t, can be determined by measuring its amounts of argon-40 (A) and potassium-40 (K),

and using this formula:
$$t = (1.26 \times 10^9) \frac{\ln\left(1 + 8.33\left(\frac{A}{K}\right)\right)}{\ln 2}$$
.

7) Find the age of a rock in which A = 4.5K. Round to the nearest hundredth of a billion years.

8) Find the age of a rock for which $\frac{A}{K} = 0.8$. Round to the nearest hundredth of a billion years.

Video 6

Change of Base formula

For any positive numbers a, b, and $x (a \neq 1, b \neq 1)$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

This allows us to rewrite any logarithm in terms of natural logarithms or common logarithms. Proof:

9) Use the Change of Base formula to approximate the following to 4 decimal places.

a) log₂ 32

b) $\log_{6} 50$

c) $\log_9 0.5$